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Are CRISPR Screens Providing the Next Generation of
Therapeutic Targets?
Francisca Vazquez1 and William R. Sellers1,2,3

ABSTRACT
◥

CRISPR screens combined with molecular and genetic profiling
of large panels of cell lines are helping to systematically identify
cancer vulnerabilities. These large-scale screens, together with
focused in vivo and isogenic cell line screens, have identified a
growing number of promising targets and led directly to numerous
target-specific drug discovery programs, several of which have
reached clinical testing. However, systematic loss-of-function stud-

ies are still in their early stages. Genetic redundancy, the limitation
of cell line models for many cancer types, and the difficulty of
conducting complex in vitro and in vivo screens remain opportu-
nities for discovery. We expect that over the next few years, efforts
like the Cancer Dependency Map along with more focused screens
will play a significant role in the creation of a roadmap of oncology
therapeutic targets.

Introduction
The success of precision cancer medicine hinges on our ability to

find and therapeutically target specific vulnerabilities in patient
tumors. Ideally, we will identify all target vulnerabilities in human
cancers, the combination of such targets that sustain cancer viability,
and develop drugs to inhibit each of them. Finally, we will need non–
cross-resistant therapeutic combinations to overcome the underlying
subclonal heterogeneity found in human tumors. We are still far from
this goal because we do not fully understand cancer vulnerabilities and
we lack drugs to target the majority of identified vulnerabilities. Two
advances nowmake possible more robust progress in identifying all of
the cancer vulnerabilities.

First, the availability and characterization of large panels of cancer
cellmodels that, while still incomplete, can begin tomodel the diversity
of human cancer. Here, the Cancer Cell Line Encyclopedia has
markedly changed the ability to profile therapeutic activity across
large sets of highly characterized cell lines (1–3). This collection is now
annotated with datasets encompassing more than 1,700 cell lines
(available at depmap.org). Recent advances in model generation
should make it possible to greatly expand this diversity. The second
revolution is the ability to induce gene-specific loss of function in the
absence of small-molecule inhibitors.Moreover, with the emergence of
genome-scale CRISPR screens, it is nowpossible to alter the function of
each gene efficiently in a pooled format. CRISPR screens are now being
routinely performed both in vitro in large panels of cell lines or isogenic
cell line pairs and in vivo in syngeneic mouse models (4–6). These
approaches have identified therapeutic targets that are being prose-
cuted in drug discovery programs or where new inhibitors are in
clinical development (Fig. 1). Perhaps equally important is the ability
to now determine the broader validity or invalidity of specific ther-

apeutic hypotheses allowing therapeutic development programs to
focus on targets having a higher probability of success.

Drug Discovery Impact
Targets for which therapeutics are now in clinical trials

Therapeutics for three targets that were entirely discovered using
RNAi or CRISPR screens are in clinical development. PRMT5 and
MAT2A were identified using in vitro RNAi screens in large panels of
cell lines or in isogenic pairs as synthetic lethal targets in CDKN2A/
MTAP-deleted tumors. MTAP, enzyme methylthioadenosine phos-
phorylase, generates the PRMT5 substrate S-adenosylmethionine
(SAM) and is frequently codeleted with the tumor suppressor gene
CDKN2A due to its proximity, resulting in a dependency in both
PRMT5 and MAT2A (7). Two SAM-cooperative PRMT5 inhibitors
(GSK-3326595 and JNJ-64619178;NCT02783300 andNCT03573310)
are in phase I/II clinical trials for multiple indications. Results from
these trials showed that adverse effects were common while multiple
tumor types responded to therapy with partial responses or stable
disease. Notably, it has not been clear that SAM-cooperative inhibitors
are the appropriate approach to exploiting the MTAP deficient state.
The MAT2A inhibitor AG-270 (Agios Pharmaceuticals) has now
completed phase I dose escalation with the appropriate decreases in
biomarkers and one confirmed partial response in a patient with a
neuroendocrine tumor (NCT03435250). Combination trials with
taxanes have now been initiated. A second MAT2A inhibitor, IDE397
(Ideaya Biosciences) has also entered phase I testing (NCT04794699).
It is worth noting that although both PRMT5 and MAT2A depletion
are selective essential in MTAP-deficient tumors when queried using
RNAi, they are pan-essential with CRISPR raising the question of
whether a sufficient therapeutic index will be achieved with PRMT5
and or MTAP inhibitors.

PTPN2, a tyrosine phosphatase, was identified from in vivo
CRISPR–Cas9 screens in murine syngeneic tumors treated with
or without anti-PD1 antibodies (6). Deletion of PTPN2 in tumor
cells increased the efficacy of checkpoint blockade by enhancing
IFNg-mediated effects on antigen presentation. PTPN2 inhibitors
(ABBV-CLS-579 and ABBV-CLS-484; Abbvie and Calico Life
Sciences) are currently in Phase I development (NCT04417465 and
NCT04777994). Unlike PRMT5 and MAT2A, PTPN2 is a selective
dependence in CRISPR screens, suggesting that suppression of PTPN2
might be well tolerated.
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The nonreceptor protein tyrosine phosphatase SHP2, encoded by
PTPN11, was also found to be a dependency in cell lines with activated
receptor tyrosine kinases (8). Multiple SHP2 inhibitors (BBP-398,
JAB-3068, TNO155) are currently in clinical trials. Subsequent inves-
tigations have suggested a role for SHP2 inhibition in the RASG12C

setting as well.
PKMYT1 kinase, a negative regulator of CDK1, was recently

described as a synthetic lethal target in cyclin E amplified tumors
using a combination of screens in isogenic pairs of cell lines and data
from DepMap (9). A phase I clinical trial was recently initiated with
RP-6306, a PKMYT1 inhibitor. On the other hand, PKMYT1 is a pan-
essential gene in the CRISPR DepMap dataset, thus the therapeutic
index of such inhibitors might be compressed.

Targets with disclosed drug discovery programs
A growing number of drug discovery programs are underway for

novel targets that were discovered using CRISPR screens. In particular,
several members of the SWI/SNF complexes were identified as vul-
nerabilities in selected contexts. BRG (SMARCA2) and ARID1B were
identified as synthetic lethal targets in tumors with mutations in their
paralogs BRM (SMARCA2) and ARID1A, respectively. The nonca-
nonical SWI/SNF complex member, BRD9, was validated as a marked
dependency in synovial and rhabdoid tumors. Suppression of epige-
netic regulators might be slower in causing a viability effect, and thus
pooled screens might underestimate the viability effect as they are
competing with faster dependencies. Hence, it will be of interest to see
if differences in dependency profiles translate into differences in
efficacy for these epigenetic regulators.

A promising class of synthetic lethal targets is emerging among
genes involved in DNA repair with several targets in drug discovery
programs. POLQ was identified as a synthetic lethal target in homol-
ogous recombination–deficient cells and later discovered using short
hairpin RNA (shRNA) and CRISPR screens in BRCA2-mutant iso-

genic cell lines (10).WRN was recently described as a synthetic lethal
target in the context ofmicrosatellite instability (MSI; refs. 5, 11).WRN
is required to resolve secondary structures that form due to large
expansion of TA-dinucleotide in MSI tumors. Multiple programs are
ongoing to find inhibitors ofWRN.WRN dependence is highly specific
forMSI tumors having no effect inmicrosatellite stable (MSS) cell lines
supporting the notion that a high therapeutic index might be achieved
with this target.USP1was discovered using CRISPR screens as a target
in BRCA-deficient ovarian and breast cancer, and an inhibitor against
USP1, a ubiquitin-specific peptidase that regulates DNA damage
response, was recently reported by KSQ therapeutics (12). The success
of PARP inhibitors in the context of BRCA1 exemplifies the potential
of these DDR targets.

ADAR was identified as a potential target with both tumor cell–
intrinsic and -extrinsic mechanisms of action. First, in large-scale
RNAi screens, a cell state of chronic IFN signaling activation was
shown to render tumors susceptible to ADAR loss as a response to the
accumulation of double-strand RNA (dsRNA). Second, in in vivo
CRISPR screen in immunocompetent mice ADAR was found to
increase sensitivity and overcome resistance to immunotherapy (13).
ADAR acts as an innate immune checkpoint in tumor cells by
preventing dsRNA-induced type 1 IFN signaling. Several drug dis-
covery programs are ongoing for this target.WhileADAR suppression
appears to cause a fitness effect in a large proportion of cell lines in
DepMap, a subset of cells is more dependent, suggesting a patient
selection strategy and positive therapeutic index might be possible.

Therapeutic indication expansion
As more loss-of-function data is generated in an expansive number

of contexts, we can use the information to expand therapeutic indica-
tions for a given therapeutic target beyond the original context. For
example, CRISPR screens in pediatric cell lines showed that pediatric
tumors, especially rhabdoid and Ewing sarcoma, that are often TP53

Figure 1.

Illustration depicting the different
types of functional genomics screens
and the targets emerging from each
that are described in this article.
Targets emerging from large-scale
screens are typically identified as
dependencies in subsets of cell lines.
In small-scale screens, pairs of cell
lines with or without the genomic
alteration or the perturbation are
compared.
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wild-type (WT), are dependent on MDM2 or MDM4 suppres-
sion (14, 15). This led to the initiation of a phase I clinical trial with
the dual MDM2/MDMX dual inhibitor ALRN-6924 in children with
relapsed/refractory cancer.

Target invalidation
An underappreciated aspect of larger-scale CRISPR screening is

the reevaluation of target hypotheses originally proposed based on
limited cell line profiling (e.g., 1–2 cell line models) either with
therapeutic compounds or with knockout (KO) or knockdown
reagents. Indeed, anecdotally pharmaceutical companies frequently
turn to such datasets when presented with new target hypotheses. In
keeping with the power of larger-scale profiling, targets such as
HDACs, AURKA, AURKB, PLK1, and KIF11 are now seen to be
broadly cytotoxic when depleted rather than having selective activ-
ity as originally proposed.

On the other hand, RNAi reagents also cause unintended off-target
effects. Several targets initially identified using this technology were
subsequently invalidated (16). In particular, maternal embryonic
leucine zipper kinase (MELK), a kinase involved in cell-cycle regula-
tion, was shown to decrease cell viability in several cancer cell lines
using RNAi reagents. This work supported the development of tool
inhibitors MELKi and NVS-MELK8a, as well as OTS167, which
reached clinical trials. Using CRISPR this kinase was later shown to
be dispensable for cell growth, indicating that these inhibitors were
acting through an off-target mechanism. Other candidate oncology
therapeutic targets, including TAK1, TBK1, STK33, HDAC6,
MAPK14, PAK4, PBK, are likewise suspected of having resulted from
off-target effects of RNAi reagents. In depmap.org the CRISPR depen-
dency profiles for TBK1, STK33, HDAC6, PAK4, and PBK shows that
complete suppression of these targets causes no or only a weak loss-of-
fitness effect across more than 1,000 cell lines. Similarly, PHGDH, a
target originally found to be essential in a subset of breast cancer cell
lines using RNAi, does not score when targeted by CRISPR guides.

Finally, in large-scale RNAi and CRISPR experiments dependence
on metabolic genes including cholesterol regulators (e.g., SCAP),
amino acid transporters (e.g., SLC7A1), and iron regulatory genes
(e.g., TFRC) are strongly linked to variations in media compositions
that can vary from cell to cell and thus, the selective dependencies are
likely artifacts of in vitro growth conditions until proven otherwise (2).

What Are We Missing?
Although the scale of CRISPR screening efforts might seem large,

there are reasons to believe that we have only identified a small fraction
of cancer vulnerabilities in human cancer.

First, cancer is heterogeneous, and many tumor types are under-
represented or entirely missing. Thus, we remain severely limited in
the ability to understand dependencies by the availability of cell line
models. In addition, to underrepresented cancers including neuroen-
docrine tumors, oligodendroglioma, adenoid cystic carcinomas, and
many pediatric malignancies; the representation of important subsets
of major cancers also remains inadequate. For example, estrogen
receptor–positive breast, prostate, esophageal, and EGFR and ALK
mutant lung cancer are all represented by only a handful of cell lines in
the current datasets. Recent advances in the generation of patient-
derived models including 3D organoids coupled with methods
enabling genome-scale screens in this context will allow a significant
expansion in the number of tumor types profiled.

Second, the majority of screens have been performed in vitro using
simplified one-cell type culture systems with one selected culture

media. Likely, many vulnerabilities that are due to ligand-receptor
interactions in distinct cell types remain to be discovered. Similarly,
dependencies that are sensitive to microenvironmental changes such
as nutrient conditions, oxygen tension, or cytokines would have been
missed. On the other hand, vulnerabilities that are linked to artificial
media conditions could be eliminated using in vivo screens or screen-
ing in more physiologic relevant media conditions. In vivo screens
using syngeneic murine tumor models have uncovered PTPN2 as a
novel tumor-expressed modulator of the immune response (17).
Single-cell technologies, such as perturb sequencing could provide
opportunities to screen heterogeneous cell populations and screen
using phenotypes beyond cell viability (18). Thus, despite the difficulty
of such complex in vivo, 3D, or coculture screens, the discovery value is
likely high.

Third, we have not discovered new tractable synthetic lethal nodes
relevant to many of the commonly mutated oncogenic pathways
including the RAS, PI3K, and WNT pathways. This may highlight
a limitation in the use of single-gene CRISPR KO. Specifically, the
majority of these pathways are comprised ofmultiple paralogous genes
providing redundant signaling functions. Indeed, the profiles ofMEK1
or MEK2 KOs do not overlap with the activity profile of MEK
inhibitors. Thus, the expression of a paralogous gene can mask
dependency if both paralogs are not simultaneously suppressed. This
limitation could be overcome by using combinatorial CRISPR screens
to target paralog genes simultaneously in large panels of cell lines (19).
Beyond paralogs, combinatorial CRISPR screens could help uncover
new vulnerabilities that only manifest when two genes or more are
suppressed, although the potential combinations are very large and
only a subset of the genome can be interrogated in any particular effort.
Similarly, drug-CRISPR combinations could uncover drug-induced
vulnerabilities. Indeed, a drug combination of BRAF and EGFR
inhibitors was recently approved in colorectal cancer based on pre-
clinical data using genetic screens.

One way to help accelerate these efforts is tomake use of the current
datasets and other approaches to come to a complete set of fully
validatedCRISPR guides for every gene in the genome. Combinedwith
approaches that can combine two or more single-guide RNAs
(sgRNA) in the same construct, this would enable greatly reduced
library sizes, which will be important for combinatorial, complex
screens. Such validated guide sets would also enable a reduction in
false-positive hits, and a reduction in low, but important false-negative
rates.

Fourth, targets having a pan-essential profile as defined by CRISPR
might be presumed to have a narrow therapeutic index where ther-
apeutics targeting the same gene would suffer from increased toxicity.
However, few therapeutics ever achieve complete target inhibition and
thus complete gene KOs might miss differential sensitivities induced
by partial or temporally restricted loss of function. For example,DHFR
and TOP2A are pan-essential genes in CRISPR screens, yet are targets
for highly effective chemotherapeutic agents. Thus, at the moment we
are unable to discover whether subsets of pan-essential gene targets
when partially or temporally inhibited would exhibit robust and
selective dependence. Additional methods to induce such phenotypes
are likely needed. Here, CRISPR interference (CRISPRi) could be used
as an alternative approach to RNAi by using mismatched sgRNA to
partial inhibit gene expression (20). Additionally, chemically induced
degron tags are likely to prove a powerful tool to manipulate gene
necessity in these two dimensions.

Lastly, perturbation of gene function by gene KOs is not equivalent
to occupying a binding site by a small molecule. Thus, more sophis-
ticated tools including base editing might provide the genetic tools to
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allow us to more directly mimic the functional consequences of small
molecules.

In conclusion, much work remains to be done but CRISPR screens
and functional genomics more generally will play a major role in the
mapping of the next generation targets for precision cancer medicine.
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