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Roughly 85% of preclinical agents entering oncology clinical trials 
fail to demonstrate sufficient safety or efficacy to gain regulatory 
approval1–3. This high failure rate highlights a weak understanding 
of the complexity of human cancer, the continued limitations of the 
predictive value of existing preclinical models and the scale at which 
cancer models are interrogated in the preclinical setting4. Hence, there 
is a need for experimental systems that better replicate the diversity 
of human tumor biology in a preclinical setting.

Increasing amounts of evidence have suggested that PDXs faithfully 
recapitulate human tumor biology and predict patient drug response 
(reviewed by Tentler et al.5, Siolas and Hannon6, Rosfjord et al.7 and 
Hidalgo et al.8) by directly comparing drug responses in patients and 
their corresponding xenografts. However, these studies have limited 
value in predicting potential clinical-trial response at the population 
level, owing to the use of a limited number of PDXs. Bertotti et al.9 
first reported testing the epidermal growth factor receptor (EGFR) 

inhibitor cetuximab across a set of colorectal PDX models, and found 
concordance in the response of EGFR-amplified models and colorec-
tal cancer (CRC) patients in the clinic to cetuximab. To extend such 
observations to a greater number of human cancers, we have generated 
an extensive collection of PDXs containing ~1,000 models, all char-
acterized for their mutations, copy-number alterations and mRNA 
expression levels. We adopted the approach laid out by Migliardi 
et al.10, using these PDXs to perform a large-scale in vivo screen to 
model inter-patient response heterogeneity with a ‘one animal per 
model per treatment’ approach (1 × 1 × 1). By correlating genomic 
information with observed efficacy, we successfully validated genetic 
hypotheses and biomarkers derived from in vitro model systems, and 
identified novel therapies that cell line model systems have failed 
to capture. Furthermore, we obtained notably similar results when 
comparing the available clinical data with the response of the PDXs. 
Finally, deep-sequencing analysis of melanoma-resistant tumors from 
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Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical 
efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established 
~1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed 
in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses 
to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach 
by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our 
results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential 
of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical 
evaluation of treatment modalities and enhance our ability to predict clinical trial responses. 
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the PCT revealed mechanisms of resistance similar to those reported 
in patients. Together, these data demonstrate, retrospectively, the 
enhanced translatability of this in vivo experimental paradigm, and 
set the foundation for the use of this population-based approach for 
the potential prediction of human clinical trial responses.

RESULTS
The Novartis Institutes for BioMedical Research PDX 
encyclopedia (NIBR PDXE)
A total of 1,075 PDX models across the spectrum of common adult 
solid cancers were established (Fig. 1a). The identity of established 
PDXs was confirmed using single-nucleotide polymorphism (SNP) 
fingerprint analysis11, and the histology was compared to each 
patient’s clinical diagnosis. Mutations, copy-number alterations and 
mRNA expression information for models used in the PCT study can 
be found with this article (Supplementary Table 1).

Minimum genetic drift of PDX models occurs after serial passages 
in mice12–19. We explored the effects of this minimum genetic drift 
on phenotypic stability of models by comparing Affymetrix tran-
scriptome expression data obtained from 672 samples derived from 
multiple passages of 47 models of various lineages (Supplementary 
Fig. 1). Samples from the same model showed strong similarity, 

with the highest correlation of expression values between xenograft 
tumors derived from the same parent (siblings) (Fig. 1b), suggesting  
minimum drift of a given PDX model between passages. Of note, 
there was a slightly decreased correlation with increased passage dis-
tance (Fig. 1b). To minimize the potential variability of drug response 
resulting from phenotypic drift, all PCT studies were conducted using 
models between passage (p)4 and p10.

Somatic mutation frequency and genomic-landscape analysis
The mutation frequency, mutation-type distribution and chromo-
somal instability20 of PDXs, cell lines and patient tumors in The 
Cancer Genome Atlas (TCGA) were characterized across indications. 
Despite a lack of matched normal samples for models from the NIBR 
PDXE and Cancer Cell Line Encyclopedia (CCLE), we observed a 
wide variation in mutation rates both between and within lineages 
from their respective cohorts, and an enrichment of particular muta-
tional patterns in certain indications—notably C→A in lung and C→T  
in melanoma (Fig. 1c and Supplementary Fig. 2). The median and 
s.d. of the mutation rate per indication was highly correlated between 
samples from CCLE, PDXE and TCGA, and the correlation was high-
est between the PDXs and patient tumors (R = 0.94 and R = 0.96 for 
median and s.d., respectively; between cell lines and tumors, R = 0.51 
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Figure 1  The Novartis Institutes for  
Biomedical Research patient-derived  
tumor xenograft encyclopedia (NIBR  
PDXE). (a) Distribution of cancer  
types in the PDXE by lineage  
(n = 1,075). (b) Similarity of PDXs  
between passages and lineages  
using Affymetrix mRNA expression  
data (MAS5 normalized). x axis,  
Pearson correlation coefficient (bar,  
median; box, first and third quartile;  
whiskers, data within 1.5*IQR of  
lower or upper quartile; circles: data  
outside whisker range). y axis,  
passage distance (defined in  
Supplementary Fig. 1); numbers in  
parentheses, number of PDX pairs  
in each passage distance. (c) Somatic  
mutation frequencies in PDXs.  
Points, individual PDX models;  
parenthesis, number of models per  
indication. Tumor types are ordered  
by median somatic mutation frequency,  
and colored by chromosomal instability (CIN) score. Lower panel, relative proportions of the six different possible base-pair substitutions. SS, soft tissue 
sarcoma; PDAC, pancreatic ductal carcinoma; EC, esophageal cancer; OVC, ovarian carcinoma; RCC, renal cell carcinoma; BRCA, breast carcinoma; CRC, 
colorectal cancer; NSCLC, non-small cell lung carcinoma; CM, cutaneous melanoma. (d) Genomic landscape analysis of melanoma across PDXE, TCGA 
and CCLE data sets. Parenthesis, number of models per indication; blue, homozygous deletions; salmon, amplification >5 copies; red, amplification  
> 8 copies; light green, known COSMIC (Catalog of Somatic Mutations in Cancer) gain-of-function mutations; dark green, truncating mutations/frameshift 
or known COSMIC loss-of-function; mustard, novel mutation; purple, pathway altered in at least one gene; gene names colored black or gray to indicate 
inclusion in same-colored pathway listed above; percentages indicate percentage of samples altered for the given gene or pathway.
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and R = 0.72; between cell lines and PDXs, R = 0.53 and R = 0.60, 
Supplementary Fig. 3). The median mutation rate showed a weaker 
correlation between cell lines and patient tumors, primarily because 
of a lack of hypermutators in melanoma cell line models. Specifically, 
75/121 (62%) of TCGA samples have a mutation rate higher than  
10 per megabase, compared to 23/44 (52%) of PDXE models and 13/49 
(27%) of CCLE cell lines. All other lineages have a higher median 
mutation rate in cell lines than in primary tumors, possibly because of 
bias introduced by the amenability of tumors to growing on plastic or 
because post-somatic mutations accrue in cell lines during passaging.  
PDXE samples have a much smaller increased mutation rate (probably 
because of residual unfiltered germline variants) and s.d., which is 
consistent with less divergence from the patient tumors.

The mutational and copy-number landscape of in vivo and in vitro 
models was compared at both the gene and pathway levels to clini-
cal samples for five indications (Fig. 1d; Supplementary Figs. 4a–d  
and 5a–e). The frequency of genetic alterations across the three data 
sets was remarkably consistent; however, we see greater correspond-
ence between PDX models and clinical samples than between the 
CCLE models and clinical samples. Several mutations are consistently 
not captured in the PDXs and cell lines (for example, MDM4 (encoding 
MDM4, p53 regulator) amplification in breast cancer (BRCA) patients 
and PHGDH (encoding phosphogycerate dehydrogenase) amplification 
in pancreatic ductal adenocarcinoma (PDAC) patients). It is not yet 
clear whether the absence of these genes in PDXs and cell lines is due 
to a potential selection bias toward in vitro and in vivo establishment  
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Figure 2  Systematic approach for in vivo compound profiling using PDXs (PCT), and its reproducibility. (a) Feasibility assessment of 1 × 1 × 1 PCT 
approach by Pearson correlation analysis. x axis, number of majority response from each response category; y axis, fraction of individual animal response 
relative to the majority (average ± s.e.m.). A total of 2,138 single-animal response data were collected and categorized from 440 unique treatment 
models (Online Methods). CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease. (b) Summary of compound 
sensitivity in the PCTs. The BestAvgResponse was used to make response calls (Online Methods), and each square represents a PDX. A total of 62 
treatment groups were tested in 277 PDXs across six indications (BRCA (breast cancer, n = 43), CM (cutaneous melanoma, n = 33), CRC (colorectal 
carcinoma, n = 59), GC (gastric cancer, n = 64), NSCLC (non-small cell lung carcinoma, n = 36) and PDAC (pancreatic ductal adenocarcinoma,  
n = 42)). Arrow (CR→PD, PR→PD, SD→PD, and CR>PD, PR>PD, SD>PD) indicates disease progression; > indicates progression seen after 64 d;  
> pindicates progression in <64 d. (c) Waterfall plot of responses to the PI3K inhibitors CLR457 (n = 205) and BKM120 (n = 213) across all 
indications; each bar represents an individual PDX. (d) Kaplan-Meier progression-free survival curve of PDXs treated with CLR457 (n = 205) and 
BKM120 (n = 213) across all indications.
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of cells with these mutations, or whether it is simply a result of the 
relatively smaller sample size in the PDXE and CCLE pools.

Feasibility assessment of the PCT (1 × 1 × 1) experimental design
The PCT response criteria were defined by modifying Response 
Evaluation Criteria In Solid Tumors (RECIST) criteria21 (mRECIST, 
see Online Methods). We evaluated the reproducibility of 2,138 sin-
gle-animal response data from 440 unique treatment models taken 
from historical experiments. On the basis of the majority response 
of single animals in each treatment model, the models were catego-
rized into four response categories: 23 complete responses (mCR),  
45 partial responses (mPR), 69 stable diseases (mSD) and 303 progres-
sive diseases (mPD). For each ‘majority response’ category, at least 
66% of the individual responses matched the majority response, and 
fewer than 10% of individual responses were off by more than one 
mRECIST category (Fig. 2a). Furthermore, when we combined the 
response categories (mCR, mPR and mSD) into a single ‘responder’ 
category, the response calls made on a single mouse were consistent 
with the majority response 95% of the time, which strongly supports 
the rationale of using one animal to reflect the true response. These 
data justify the 1 × 1 × 1 experimental approach, facilitating efficient 
robust assessment of drug response across a large number of models 
to determine population-based response rates.

The PCT approach for in vivo compound profiling
Similarly to what a cancer patient experiences in the clinic, each 
mouse received one treatment in a given trial. In addition, each 
tumor was enrolled in multiple treatment trials, enabling the assess-
ment of inter-patient response heterogeneity across multiple disease 
lineages. A total of 38 unique therapeutic entities were screened as 
either a single treatment (36 unique entities) or in combination (26 
unique entities), and model responses were categorized (Fig. 2b and 
Supplementary Table 1).

The aggregate trial reproducibility of the PCT approach was 
assessed by comparing the responses of compounds that modulate 
the same molecular target. Two structurally distinct pan-PI3K inhibi-
tors, BKM120 and CLR457, were tested in >200 PDXs across all six 
test indications. Strikingly, at the population level, both compounds 

had a highly similar response rate (mCR + mPR + mSD): 48% for 
BKM120 and 54% for CLR457 (Fig. 2c). At the individual patient 
level, response rates were also significant (Supplementary Fig. 6;  
R = 0.56). We also found increased progression-free survival (PFS, 
defined here for PDX as time until tumor volume reaches 200% of 
baseline) compared to the PFS of untreated controls (BKM120, hazard 
ratio 0.28, 95% interval 0.23–0.35, P < 1 × 10−16; CLR457, hazard ratio 
0.28, 95% interval 0.23–0.35, P < 1 × 10−16) (Fig. 2d).

In addition, two combinatorial treatments—LEE011 (an inhibitor of 
cell cycle regulatory kinases CDK4/6)-everolimus (mTOR inhibitor); 
and LCL161 (IAP inhibitor)-paclitaxel—had comparable response 
rates and median survivals in repeated trials when assessed at the 
population level (although the responses of individual PDXs were not 
always consistent) (Supplementary Fig. 6b–f). These data strongly 
support the selectivity of the biological effects that are observed with 
compounds modulating the same genetic target, and thus reinforce 
the validity and reproducibility of the 1 × 1 × 1 PCT approach.

PCT predicts patient response to targeted therapies
The translatability of the 1 × 1 × 1 PCT concept was assessed by 
comparing the responses of targeted therapies observed in PDXs to 
clinical outcomes in cancer patients. Encorafenib is a highly potent 
and selective RAF inhibitor, and 69% of melanoma cell lines with a 
mutation in BRAF (encoding BRAF, B-raf proto-oncogene, serine/
threonine kinase)- responded to encorafenib treatment in vitro (cutoff 
0.2 µM, Supplementary Fig. 7a). When administered at clinically 
relevant exposure levels, as predicted, 67% of PDXs mutated in BRAF 
at the position encoding amino acid V600 responded to encorafenib, 
with 42% demonstrating mCR or mPR (Fig. 3a). These data are con-
sistent with the reported phase 2 clinical trial response rates of the 
BRAF inhibitors vemurafenib22 and dabrafenib23. Furthermore, none 
of the NRAS (encoding the neuroblastoma RAS viral (v-ras) onco-
gene homolog protein, NRAS)-mutated PDXs responded to encoraf-
enib treatment, consistent with reports that melanoma patients with 
mutated NRAS are relatively insensitive to type 1 and type 1.5 BRAF 
inhibitors compared to patients with wild-type NRAS24,25.

About 30% of BRAF-mutated melanomas are intrinsically insensi-
tive to BRAF inhibitors22,23. Improved responses in this population 

can be achieved by inhibiting both BRAF 
and its downstream target MEK kinase26. 
Administering a combination of encorafenib  
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Figure 3  PCT predicts targeted therapy  
response and validates predictive gene 
signature. (a,b) Waterfall plot of response 
to the BRAF inhibitor encorafenib (n = 33) 
(a) and encorafenib in combination with the 
MEK inhibitor binimetinib (n = 33) (b) among 
melanoma PDXs. GOF, gain of function; WT, 
wild type. (c) Waterfall plot of response to DR5 
agonist TAS266 among DR5 signature–positive 
and DR5 signature–negative melanoma PDXs  
(n = 33). (d) Kaplan-Meier PFS curve with 
TAS266 treatment in melanoma, stratified by 
DR5 predictive signature (n = 33). (e) Waterfall 
plot of response to PI3Kα inhibitor BYL719 
among PIK3CA- and PTEN- mutated PDXs 
across five indications (n = 205). LOF, loss of 
function; blue, PIK3CA GOF/PTEN WT  
(n = 21); green, PIK3CA GOF/PTEN LOF  
(n = 6); brown, PIK3CA WT/PTEN LOF (n = 9); 
gray, PIK3CA WT/PTEN WT (n = 169).
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and binimetinib (a small-molecule MEK inhibitor) synergisti-
cally inhibited the growth of BRAF-mutated cell lines in vitro 
(Supplementary Fig. 7b,c). Binimetinib single-agent treatment yielded 
moderate anti-tumor activity in the melanoma PCT (Supplementary 
Fig. 8); by contrast, the combined treatment increased the response 
rate to 100% among BRAF-mutated PDXs, with 72% displaying mCR 
or mPR (Fig. 3b). This is concordant with the results seen in a combi-
nation phase 1/2 trial in BRAF(V600)-mutant melanoma patients, in 
which a combination of dabrafenib and trametinib resulted in a 94% 
response rate, with 76% PR and CR26,27. The consistencies between 
preclinical and clinical data support the utility of the PCT approach 
for reproducing clinical patient responses to targeted therapies.

PCT successfully reveals the mechanisms of resistance
To enable the robust study of escape mechanisms, PDXs showing 
primary responses were all treated until resistance developed, after 
which they were subjected to DNA- and RNA-sequencing analysis. 
We focused our initial resistance analysis on the MAPK inhibitors. 
Three PDXs treated with either encorafenib as a single agent, or in 
combination with BKM120 or binimetinib, developed resistance 
through BRAF amplification (Table 1 and Supplementary Fig. 9a–c),  

a clinically relevant resistance mechanism 
observed for both the BRAF-inhibitor single-
agent treatment and the combination treat-
ment with MEK inhibitors28–30. In addition, 
mutations in the mitogen-activated protein 
kinase genes MAP2K1 (encoding MEK1) 
and MAP2K2 (encoding MEK2) were 
detected with the encorafenib-BKM120 and  
binimetinib-LEE011 combination treatments, 
respectively (Table 1). The MEK1E203K muta-
tion has previously been identified in patients 
with acquired resistance to RAF-inhibitor 
monotherapy31; this is the first report that 
this mutation may also confer resistance to a  
RAF- and MEK-inhibitor combination therapy.  

These data strongly suggest that PDXs and PCTs are well-suited tools 
for discovering mechanisms of resistance.

PCT functionally supports predictive biomarker hypotheses
We next asked whether a PCT could be used to provide initial vali-
dation of genetic biomarker hypotheses emerging from in vitro cell 
line studies. TAS266 is a nanobody developed to activate the DR5 
(death receptor 5, encoded by TNFRSF10B)-mediated apoptosis path-
way in cancer cells32. A signature predictive of treatment response, 
developed from an in vitro cell line screen, was defined as when DR5 
expression > median DR5 expression and caspase-8 expression > 
median caspase-8 expression. We assessed response to TAS266 in 
the melanoma PCT, and 18% of PDXs displayed a range of sensitivity 
(mPR and mCR) (Fig. 3c). We retrospectively applied the predic-
tive signature to this data set, and found that 80% (4/5) of signature- 
positive models responded to the treatment. Moreover, the signature-
positive xenografts had significantly better PFS (hazard ratio 0.09, 
95% interval 0.01–0.71, P < 1 × 10−16) than did the signature-negative 
cohorts (Fig. 3d).

A PIK3CA (encoding phosphatidylinositol-4,5-bisphosphate  
3-kinase, catalytic subunit α) mutation has been reported as the  

Table 1  Candidate resistance mechanisms in melanoma PDXs with acquired resistance to 
MAPK pathway inhibitors

PDX model Treatment Dosing Response
Duration of  
response (d)

MAPK pathway candidate  
resistance mechanism

X-3676 Encorafenib; 
binimetinib

20 mg/kg q.d. 

10 mg/kg b.i.d.

mSD 39 BRAF amplification

X-3483 Encorafenib 20 mg/kg q.d. mCR 143 BRAF amplification

X-3676 Encorafenib; 
BKM120

20 mg/kg q.d. 

35 mg/kg q.d.

mSD 35 BRAF amplification

X-2992 Encorafenib; 
BKM120

20 mg/kg q.d. 

35 mg/kg q.d.

mPR 125 MAP2K1E203K

X-2613 Binimetinib;  
LEE011

10 mg/kg b.i.d. 

250 mg/kg q.d.

mPR 241 MAP2K2Q218P

q.d., daily; b.i.d., twice daily.
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Figure 4  Combination therapies increase  
the overall response rate and progression- 
free survival. (a) Box plot of anti-tumor  
activity of single agents (36) and  
combinations (26) across six indications  
(n = 277) (BRCA, CM, CRC, GC, NSCLC  
and PDAC) in PCTs. Middle bar, median;  
box, first and third quartile; whiskers,  
data within 1.5 = IQR of lower or upper  
quartile. (b) Kaplan-Meier PFS curve of  
the single agents (36) and combinations  
(26) across six indications in the PCTs  
(n = 277). The y axis is the percentage of animals on study as calculated by tumor doubling (when a tumor volume has doubled compared to its baseline 
tumor volume), after which a model is considered to have progressed on treatment. (c) Waterfall plot of response to LEE011 among melanoma PDXs 
(n = 33). (d) Waterfall plot of response to the encorafenib-LEE011 combination among melanoma PDXs (n = 33). (e) Kaplan-Meier PFS curve of 
encorafenib and LEE011 single agents and encorafenib-LEE011 combination among BRAF-mutated melanoma PDXs (n = 15).
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foremost positive predictor of sensitivity to BYL719, a selective 
PI3K-α inhibitor, in breast cancers33. The response rates between 
PDXs harboring PIK3CA and/or PTEN (encoding phosphatase and 
tensin homolog) mutations and PDXs with wild-type PIK3CA and 
PTEN were similar (50% versus 54%); however, we observed differ-
ential responses among PIK3CA-mutated PDXs with different PTEN 
statuses (Fig. 3e). More than 67% of PDXs with PIK3CA mutations 
and wild-type PTEN responded, whereas only 11% of the wild-type 
PIK3CA and PTEN-mutated PDXs did, adding further evidence 
that people with a PIK3CA mutation are more likely to benefit from 
BYL719 treatment than are people with PTEN mutations34. These data 
suggest that PCTs, combined with comprehensive genomic characteri-
zation, can provide an effective in vivo validation step for emerging 
predictive gene signatures.

Multiple CDK4-inhibitor combinations dramatically prolong PFS
More than a third of our PCTs explored combination treatments. The 
median response rate was 30% across 36 single agents, compared to 
64% for 26 combinations tested among the unselected PDXE popu-
lation (Fig. 4a). Furthermore, combinations produce a significantly 
longer median PFS period than do single agents (22 d for single agent 
versus 55 d for combination; hazard ratio 0.52, 95% interval 0.48–0.57,  
P < 1 × 10−16) because they delay the emergence of resistance (Fig. 4b).  
Among the tested combinations, encorafenib combined with CDK4/6 
inhibitor LEE011 showed dramatically enhanced activity compared to 
the single agents (Figs. 3a and 4c), with a 100% response rate, including 
87% mPR and mCR (Fig. 4d) in melanoma PDXs. Pharmacokinetics 
(PK) studies demonstrated no drug-drug interaction (DDI)4 
(Supplementary Fig. 10). Furthermore, this combination signifi-
cantly improved PFS and delayed the development of resistance com-
pared to encorafenib alone (hazard ratio 0.17; 95% interval 0.06–0.52,  
P = 1.8 × 10−3 (Fig. 4e). It is noteworthy that 40% of the PDXs treated 
with the encorafenib-LEE011 combination never developed resistance 
under continuous treatment for up to 200 d (Fig. 4e).

The ability of LEE011 to boost efficacy was further exemplified by 
its combinatorial effect with BYL719 in breast cancer (Supplementary 
Fig. 11a–d), suggesting that combining CDK4/6 inhibitors with other 
targeted agents is a highly effective approach for maximally inhibiting 

the oncogenic pathway and preventing or delaying the development of 
drug resistance. Notably, BYL719 did not show increased combinato-
rial potential when combined with LEE011 in vitro, demonstrating 
a potential disconnect between in vitro cell-based assays and in vivo 
PDX-based PCT screens (Supplementary Fig. 11e,f).

IGF1R inhibitors do not potentiate the activity of targeted therapies
Another example in which a disconnect between in vitro cell-based 
assays and in vivo PCTs has been observed is in the ability of IGF1R 
(insulin-like growth factor 1 receptor) inhibitors to potentiate the 
anti-tumor activities of multiple targeted therapies. LFW527, a low-
molecular-weight (LMW) IGF1R inhibitor, has been identified in a 
large-scale combination screen as having strong synergy in 18 out 
of 45 CRC cell lines when combined with binimetinib (Fig. 5a,b). 
This combination was screened in the CRC trial across 35 PDXs. 
At clinically relevant exposure levels, binimetinib demonstrated 
mild anti-tumor activity with a response rate of 55% (1 mPR and  
22 mSD) (Fig. 5c). Contrary to what was observed in vitro, the combi-
nation of LFW527 with binimetinib did not improve the response rate  
(Fig. 5d), or improve PFS when compared to binimetinib single-
agent treatment (hazard ratio 1.43, 95% interval 0.83–2.47, P = 0.19)  
(Fig. 5e). PK studies with both IGF1R inhibitors showed no DDI 
issues encountered (data not shown), suggesting that the lack of syn-
ergy in vivo is unlikely to be due to insufficient target inhibition in 
the combination groups. Similarly, LFW527 potentiated the in vitro 
activity of binimetinib in the non-small cell lung carcinoma (NSCLC) 
cells (Supplementary Fig. 12a,b) and PDAC cells (Supplementary 
Fig. 13a,b), but failed to demonstrate any synergy in the PCT studies 
(Supplementary Fig. 12c–e and Supplementary Fig. 13c–e), regard-
less of whether an LMW inhibitor or a fully humanized antibody 
was used. Furthermore, such a disconnect between the in vitro and  
in vivo studies was not limited to the binimetinib with IGF1R inhibi-
tor treatment combination. When combined with the mTOR inhibitor 
everolimus, LFW527 again demonstrated strong synergy in vitro, but 
it neither enhanced response rate nor improved PFS in breast cancer 
trials in vivo (data not shown). These data together provide examples 
of a disconnect between in vitro screens conducted in cell lines and 
in vivo PCTs conducted in PDXs.
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Figure 5  IGF1R inhibitor does not potentiate anti-tumor activities of targeted therapy in vivo.  
(a) Waterfall plot of response to 500 combinations among 45 CRC cell lines. A hit is defined as  
a combination with a synergy score above 2 and a maximum growth inhibition above 0.7 in  
individual cell line. (b) Score plots for the combination of LFW527-binimetinib. Circle, hit;  
square, miss. Symbol size translates the increase of effect between the combination and either  
agent. (c) Waterfall plot of response to binimetinib among CRC PDXs (n = 43). Binimetinib was  
dosed at 10 mg/kg twice daily. (d) Waterfall plot of response to LFW527-binimetinib combination  
among CRC PDXs (n = 33). LFW527 was dosed at 12.5 mg/kg daily, and binimetinib was dosed at  
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DISCUSSION
We have demonstrated the effectiveness of the 1 × 1 × 1 PCT experi-
mental paradigm for examining population-based in vivo compound 
screens. It enables insight into inter-patient response heterogeneity in 
an efficient manner, and helps to identify responsive subpopulations, 
thus enabling the discovery of predictive biomarkers. In addition, it 
can be used to identify clinically relevant mechanisms of resistance. 
We propose this experimental paradigm for preclinical drug evalua-
tion to enhance the predictability for phase 1/2 clinical trials.

As with all preclinical models, there are limitations with PDXs, 
including the lack of an intact immune system, differential influences 
of mouse stroma versus human stroma and, in addition, the under-
representation of very specific genotypes and specific lineage subtypes. 
Nonetheless, conservation of major genetic alterations found in patient 
tumors in the corresponding PDXs underlies the extensive utility of 
these models in the preclinical studies. Eirew et al.14 have demonstrated 
clonal dynamics during in vivo engraftment in breast cancer patient 
xenografts, although once established, the xenografts are genetically 
relatively stable. This could have a profound impact when we consider 
using personalized PDXs to guide patient therapy, as in the Avatar 
trial setting8. The data presented in the current study, however, are 
concerned with the population response. As PDXs closely resemble the 
genomic landscape of human cancers at the population level, there is a 
strong rationale for performing preclinical drug screens to investigate 
the population-based inter-patient response heterogeneity.

In addition, we have demonstrated that PDXs may well have an 
advantage over long-established cell lines. Our genomic analysis 
revealed that various signaling pathways are under- or overrepresented 
in cell lines across lineages. For example, we found underrepresenta-
tion of alterations in the PI3K pathway in NSCLC and overrepresen-
tation of the transforming growth factor (TGF)-β pathway in PDAC 
and receptor tyrosine kinase (RTK) alterations in BRCA. In contrast, 
these pathways are accurately represented in the PDX collection at a 
similar mutation frequency as that reported in patient tumors. The 
discrepancies between in vitro and in vivo may well reflect the clonal 
bias inherent in immortalized cells propagated on plastic. Another 
well-understood example is that the dependency of cancer cells on 
developmental pathways is lost upon culturing extensively in vitro 
and is not re-acquired once returned to an in vivo environment35. 
Furthermore, when considering the fact that only a limited number 
of cell lines are able to grow in vivo as xenograft models, PDXs more 
broadly represent inter-patient diversity.

The liabilities with cell-based models are borne out in discrepan-
cies with respect to drug response. An in vitro combination screen in 
melanoma failed to identify the combinatorial effect of the CDK4/6 
inhibitor with other targeted therapies, whereas the PCT subsequently 
did reveal this effect (as exemplified by the combination of LEE011 
and encorafenib). Our studies additionally show differential combina-
torial effects with IGF1R inhibitors in vitro and in vivo. Indeed, there 
are several literature reports showing that combinatorial inhibition of 
IGF1R and MEK1/2 (refs. 36–38) or of PI3K/mTOR39 are efficacious 
not only in cell proliferation assays in vitro but also, importantly, in 
cell line–derived xenografts in vivo. These positive results have led to 
a number of clinical trials in CRC and NSCLC, as well as in several 
other indications, yet the data from the clinical trials are fairly disap-
pointing40–43, concordant with our results in PDX models.

Analysis of the melanoma-resistant tumors under continuous drug 
treatment by deep-sequencing analyses has revealed similar mecha-
nisms of resistance to both single-agent (encorafenib) and combina-
tion treatments (encorafenib-binimetinib and encorafenib-BKM120) 

reported in the clinic, supporting the idea that the PCT approach 
can recapitulate the mechanisms of drug resistance found in patients. 
Additionally, we have identified a novel mutation (MAP2K2Q218P) 
that could potentially confer resistance to the binimetinib-LEE011 
combination currently being evaluated in the clinic to treat NRAS-
mutated melanomas. Das Thakur et al.44 reported BRAF amplification 
as a mechanism conferring resistance to BRAF inhibitors; despite the 
use of multiple animals in each treatment group, this was the only 
mechanism identified. In contrast, the population- based PCT stud-
ies uncovered diverse mechanisms of resistance to BRAF inhibition, 
demonstrating a very efficient approach to studying drug resistance 
in an in vivo setting, and consequently, providing opportunities to 
develop strategies that are likely to mitigate resistance mechanisms 
at an early stage of drug development.

To our knowledge, the herein described PDX clinical trial concept 
is the first to evaluate the reproducibility and translatability of the  
1 × 1 × 1 concept to drug response using an extensive, well- 
characterized PDX collection. This approach represents a new  
experimental paradigm through which to address the tumor biol-
ogy of cancer patients, and interrogate targeted therapies in in vivo  
models that are more relevant to the clinic than are traditional oncol-
ogy models, which could potentially improve the ability of preclinical 
oncology studies to predict patient response in the clinic.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Patient tumor specimen collection and annotation. Patient tumor speci-
mens (untreated or treated) were obtained from non-profit and commer-
cial vendors in the US and China (PDXs were established and exclusively 
used in China for tumors originating from patients in China). All patients  
provided informed consent for the tumor samples procured by Novartis, Inc. 
from: the National Disease Research Interchange, Philadelphia, Pennsylvania, 
USA; National Cancer Institute, Rockville, Maryland, USA; Maine Medical 
Center, Portland, Maine, USA; Tufts Medical Center, Boston, Massachusetts, 
USA; The Mt Group Inc., Van Nuys, California, USA; and GenenDesign, 
Shanghai, China. Clinical and pathologic data were entered and maintained in  
Novartis databases.

Generation of PDX models. Mice were maintained and handled in accordance 
with the Novartis Institutes for BioMedical Research (NIBR) Animal Care and 
Use Committee protocols and regulations. Patient tumor material was collected 
in culture medium and kept on wet ice for engraftment within 24 h after resec-
tion. Upon arrival, necrotic and supporting tissues were carefully removed using 
a surgical blade. Three ~30–50-mg tissue fragments were flash frozen and stored 
at −80 °C for genomic profiling, and ~50–100-mg tissue fragments were fixed 
in 10% neutral-buffered formalin and paraffin embedded for histopathologic 
analysis. Approximately 20–30-mg tissue fragments were implanted subcutane-
ously into the flank region of athymic nude (nu/nu) female mice using a trocar. 
Successfully engrafted tumor models were then passaged and banked after three 
passages in mice. The identity of the established PDXs was confirmed by SNP48 
analysis before and after PCT studies.

PCT and drug treatment. Established and genomically characterized PDXs 
of BRCA, CM, CRC, gastric cancer (GC), NSCLC and PDAC were used for 
the PCT study. Tumors were subcutaneously implanted into nude mice at pas-
sages between p4 and p10. Tumors (~200 mm3) were enrolled on a rolling base 
and treated with single agents or combinations without pre-selection on the 
basis of their genetic or proteomic, or growth latency/doubling time. A total of  
38 unique therapeutic entities were screened, encompassing five cytotoxic chem-
otherapeutics and 33 targeted agents (including small molecule, antibody and 
antibody-drug conjugate), used as a single treatment (36) or in combination (26).  
Approximately 20 treatments were tested in each of six indications (BRCA, CM, 
CRC, GC, NSCLC, PDAC) with 29–45 models for each indication. The maxi-
mum tolerated dose (MTD) was used for the agents that have not entered the 
clinics yet, whereas the clinically relevant dose (CRD) was used for agents that 
are currently used or evaluated in the clinic. The CRD was converted from a 
human dose by matching the human blood exposure to mouse blood exposure. 
The standard treatment schedule was 21 d. Fast-growing tumors were dosed 
until the tumors reached ~1,500 mm3, and treatment was continued until the 
tumor volume doubled at least twice for slow-growing tumors. The tumor size 
was evaluated twice weekly by caliper measurements, and the approximate  
volume of the mass was calculated using the formula (l × w × w) × (π/6), where l 
is the major tumor axis and w is the minor tumor axis. In the absence of progres-
sion or an adverse event, treatment was continued for at least 90 d.

Response calls. The response was determined by comparing tumor volume 
change at time t to its baseline: % tumor volume change = ∆Volt = 100% × 
((Vt – Vinitial) / Vinitial). The BestResponse was the minimum value of ∆Volt for  
t ≥ 10 d. For each time t, the average of ∆Volt from t = 0 to t was also calcu-
lated. We defined the BestAvgResponse as the minimum value of this aver-
age for t ≥ 10 d. This metric captures a combination of speed, strength and 
durability of response into a single value. The criteria for response (mRECIST) 
were adapted from RECIST criteria21 and defined as follows (applied in this 
order): mCR, BestResponse < −95% and BestAvgResponse < −40%; mPR, 
BestResponse < −50% and BestAvgResponse < −20%; mSD, BestResponse  
< 35% and BestAvgResponse < 30%; mPD, not otherwise categorized. Mice that 
were sacrificed because of an adverse event before they had completed 14 d on 
trial were removed from the data set.

DNA and RNA extraction. RNA and DNA from ~30 mg of flash-frozen tissue were 
purified with the QIAcube (Qiagen cat. no. 9001292) automated sample preparation  

platform using the Qiagen ALLPrep DNA/RNA Mini Kit (cat. no.80204).  
The RNA concentration and integrity was evaluated with the Agilent 2100 
Bioanalyzer (cat. no. G2940CA) using the Agilent RNA 6000 Nano Kit (cat. no. 5067-
1511) and protocol. DNA quantification was assessed with the NanoDrop 8000.

PDX identity validation by SNP genotyping. The identities of tissue sam-
ples derived from the PDX models were established by SNP genotyping DNA 
derived from the original patient tumor, as well as tissue from each PDX model 
at different passages. The SNP genotyping panel uses a set of 48 intergenic 
SNPs originally developed by the Broad Institute and previously described11.  
The assays were performed at Asuragen, Inc. using a SNaPshot multiplex assay 
format (Life Technologies, Inc.) with the analysis performed using a Novartis-
developed application.

Copy-number analysis (SNP array). Copy-number analysis was derived from 
the profiling of total DNA on the Affymetrix genome-wide human SNP Array 
6.0 chip using instrumentation and protocols from Affymetrix. The profiling was 
performed at either the Novartis PHARMA core facility in Basel, Switzerland, 
or by CiToxLAB in France. The DNA samples were profiled in batches of  
96 chips containing 15 normal (HapMap) DNA samples for QC and normaliza-
tion as described previously11. The raw CEL files were returned, and the QC steps 
were performed using Affymetrix Genotyping Console. The MAPD (median 
of the absolute values of all pairwise differences) parameter was the critical QC 
metric. Chips with a MAPD value >0.35 were excluded from analysis. The SNP 
genotyping QC metrics (contrast QC and call rate) were not relied on because 
the human DNA was derived from tumor cells. Varying amounts of mouse DNA 
did not substantially affect sample QC, and samples without human DNA failed 
before reaching the MAPD calculation. The CEL files from chips passing QC 
were used for copy-number analysis. Both a copy-number segmentation file and 
a gene-level copy-number value were generated using Partek Genomic Suite 6.6 
genomic segmentation algorithm (Partek, Inc.). CIN scores were calculated as 
the s.d. of the mean copy-number across chromosome arms.

Expression arrays. Total RNA with an acceptable integrity (Agilent RNA 
integrity number (RIN) > 7.5) was used for gene expression profiling. The pro-
filing was performed at either the Novartis PHARMA core facility in Basel, 
Switzerland, or by CiToxLAB in France using instrumentation and protocols 
from Affymetrix. The Human Genome 133 Plus 2.0 gene chip (Affymetrix, 
Inc.) was used with the Affymetrix 3′ IVT One-Cycle target labeling proto-
col. The raw CEL files were returned, and the QC steps were performed using 
an Affymetrix Genotyping Console. Chip quality was accessed with selected  
quality-control parameters (background, % present calls, scaling factor and the 3′/5′  
ratios of β-actin (ACTB) and glyceraldehyde dehydrogenase (GAPDH) reference 
genes) generated using the MAS 5.0 algorithm (MicroArray Suite 5) developed 
by Affymetrix. All samples had a ‘scaling factor’ between 0.71 and 1.15 and the 
‘background average’ value ranged from 44.5 to 57.2. Finally, the 3′/ 5′ ratios for 
the GAPDH gene were between 0.88 and 0.93.

RNA-seq analysis and mutation calls. Total RNA was used as input to the 
Illumina mRNA-Seq 8 Sample Prep Kit (cat. no. RS-100-0801) or TruSeq RNA 
Sample Prep Kit v2-Sets A/B (48Rxn) (cat. no. FC-122-1001 and FC-122-1002), 
depending on the date of the RNA-Seq library generation. RNA input ranged 
from 0.25 µg to 2 µg with RIN (RNA Integrity Number) scores from 5.1 to 
10.0. A size fragment range between 200 and 300 bp was selected on a 2% gel 
using Bio-Rad low-range ultra-agarose (cat. no. 161-3107) for the mRNA-Seq 
8 sample Prep Kit manually. The gel-free protocol was employed for the TruSeq 
RNA Sample Prep Kit according to the manufacturer’s specifications, and was 
performed on the Beckman Coulter Biomek FXp robotics platform. The stand-
ard RNA fragmentation profile was used, as recommended by Illumina (94 °C 
for 5 min for the mRNA-Seq 8 sample Prep Kit, and 94 °C for 8 min for the 
TruSeq RNA Sample Prep Kit). The PCR amplified RNA-Seq library products 
were then quantified using the Agilent DNA 1000 kit (cat. no. 5067-1504) on the 
Agilent 2100 BioAnalyzer or the Standard Sensitivity NGS Fragment Analysis Kit  
(cat. no. DNF-479) on the Advance Analytical Fragment Analyzer. The sam-
ples were diluted to 10 nM in Qiagen Elution Buffer (Qiagen material number 
1014609), denatured and loaded at a range of 2.25–10 pM for clustering. The PE 
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Cluster Generation Kit v4 (PE-203-4001) was used with the Illumina Genome 
Analyzer IIx. The TruSeq PE Cluster Kit v2 – cBot – HS (cat. no. PE-300-2001) 
and the TruSeq PE Cluster Kit v3 – cBot - HS kit (cat. no. PE-401-3001) were 
used with the Illumina HiSeq2000/2500.

The resultant flow cells were loaded onto the Illumina GAIIx using the TruSeq 
Sequencing by Synthesis (SBS) Kit v5 – GA (36-cycle) reagents (cat. no. FC-
104-5001). The HiSeq2000/2500 was loaded with the TruSeq SBS Kit – HS (50 
cycles) reagents (cat. no. FC-401-1002) or the TruSeq SBS Kit v3 – HS (200 
cycles) reagents (cat. no. FC-401-3001).

The RNA-seq libraries were sequenced at a range of 75–100-bp paired-end 
reads with a 7-bp index using the standard Illumina primers. The sequence 
intensity files were generated by an instrument using the Illumina Real-Time 
Analysis software. The intensity files were demultiplexed, and FASTQ files were 
created using the CASAVA software suite (version dependent upon the date 
of analysis and the current CASAVA package available; the latest version used 
was 1.8.2).

The FASTQ files were then processed as in Korpal et al.45, modified to align 
simultaneously to the mm10 and GRCh37 genomes and transcriptomes to allow 
for both human (tumor) and mouse (stroma) alignment. Mutations were called 
only on GRCh37 (ref. 45). To calculate mutation rates, non-COSMIC muta-
tions that appeared in >50 samples or in dbSNP v138 were removed as probable 
germline variants, false positives or alignment artifacts.

Somatic mutation calls. For mutation calls from TCGA samples, we down-
loaded somatic single-nucleotide variants (SNVs) identified from whole exome 
sequencing and copy-number alterations identified by Affymetrix SNP6.0 
from the cBio portal46 and mutation rates across a variety of cancer types from 
Lawrence et al.47. For the PDXE and CCLE samples, probable somatic SNVs were 
identified using transcriptome sequencing and the CCLE11, and copy-number 
alterations were determined using Affymetrix SNP6.0 arrays.

Pan-cancer panel analysis and SNV and copy-number calls. Targeted sequenc-
ing (SureSelect Human All Exon V4, Agilent) was performed on the DNA of 
treated and control samples using a HiSeq-2500. The sequencing data was proc-
essed as follows: First, sequence reads were aligned with the reference human 
genome (build hg19) and the Mouse genome (build mm10) using the Burrows-
Wheeler Aligner (BWA)48 to create a BAM file. Next, reads perfectly mapping 
to the mouse genome were removed, and the initial BAM files were cleaned with 
Picard to mark PCR duplicates (http://broadinstitute.github.io/picard/). Then, 
the Genome Analysis ToolKit was used for local realignment and base quality 
score recalibration49,50. SNVs were identified with the GATK UnifiedGenotyper 
in multi-sample mode and copy-number variants called using ExomeCNV. 
SNVs were retained only if at least five supporting reads were identified. SNVs 
were annotated with dbSNP v.138, COSMIC v.68, and SnpEff and copy-number  
variants were called using ExomeCNV51.

GATK was run in multi-sample mode to increase the sensitivity on detecting 
SNVs at low allele frequency. Single nucleotide variants were annotated using 
dbSNP (v.138) and COSMIC (v.68). Functional annotation was obtained using the 
SNPeff algorithm20. The following criteria were employed to annotate high quality 
called SNVs (quality filter = PASS and total depth of coverage over the position 
≥100 reads) observed in the treated samples as de novo or pre-existent SNVs in the 
control sample: first, de novo SNVs should be supported by more than five reads 
with the alternate allele in the treated sample, and by fewer than five reads in the 
control sample. Second, pre-existing SNVs should be supported by more than five 
reads with the alternative allele in both the treated and the control samples.

Copy-number calling in the PDX data was performed by obtaining the ratio 
of coverage between the resistant sample and the respective vehicle sample. An 
amplified region is expected to have a higher proportion of reads mapping to 
it, relative to its vehicle, whereas a copy-number loss would have fewer reads 
relative to its vehicle. We used ExomeCNV to call copy-numbers on the PDX 
data. ExomeCNV takes depth of coverage files generated by GATK as input and 
outputs the estimated copy-numbers for all regions of the sample. It calculates 
the log coverage ratio between the resistant sample and the vehicle, and calls 
CNVs for each exon individually. We assumed the contamination rate to be 
zero, and used other default parameters. We attempted to normalize the G+C 
profile for every library so as to obtain a uniformly distributed coverage for GC.  

The normalization was performed by obtaining a running median of coverage 
values across localized regions. Copy-numbers for individual exons were called 
using ExomeCNV on the normalized coverage profiles.

Individual exonic CNV values were combined into per gene CNV values by 
using the median CNV value of all the exons across a gene. Arm level, as well as 
focal copy-number changes, were called this way. Copy-numbers were not called 
for non-autosomal chromosomes, owing to a lack of knowledge of the gender of 
the samples. We verified the CNV values for two of the resistant-vehicle pairs 
against SNP 6.0 data to very good accuracy levels.

Pharmacological characterization in cell lines. Cell culture and pharmaco-
logical treatment were done as reported previously11. Briefly, cell lines were 
dispensed into 1,536-well plates (optimized for tissue culture) with a final vol-
ume of 5 µl and a concentration of 250 cells per well. 12–24 h after plating,  
20 nl of each compound dilution series were transferred to the 1,536-well plates 
(containing the tumor cells) using slotted pins (V&P Scientific). This yielded 
final drug concentration ranges of 8 µM–2.5 nM (8-point dose response assays) 
by 3.16-fold dilutions and a final DMSO concentration of just less than 0.4%.  
The cell–compound mixtures were incubated for 72–84 h; afterwards, cell num-
bers were determined by measuring the amount of ATP per well using Cell 
Titer Glo (Promega). Luminescence per well was measured using a ViewLux 
plate reader (Perkin Elmer). Dose-response curves were generated, and the  
half-maximal inhibitory concentration (IC50) was calculated.

Cell line combination synergy testing. The identities of the cell lines used in 
the in vitro screens were confirmed using SNP genotyping DNA compared to 
SNP genotyping DNA derived from the parental cells. The SNP genotyping panel 
uses a set of 48 intergenic SNPs originally developed by the Broad Institute and 
previously described11. The cells were maintained at 37 °C in 5% CO2.

Chemical inhibitors were dissolved into DMSO at a 10 mM stock concentra-
tion, and diluted to yield the desired concentrations for each compound used 
in the screens. Each pairwise combination was tested at multiple concentrations 
using a matrix in which each drug was added to the cells at five concentrations, 
with alternate matrix points and six additional matrix points omitted to allow 
for more efficient screening. 12–24 h after plating, the compound was acousti-
cally transferred in droplets from the source plate to the assay plates containing 
cells, until the desired concentration was achieved. The cell-compound mix-
tures were incubated for 72–84 h; afterwards, cell numbers were determined 
by measuring the amount of ATP per well using Cell Titer Glo (Promega). 
 Luminescence for each well was measured using a ViewLux plate reader  
(PerkinElmer). Inhibitory responses were calculated for each treated well relative to  
the median luminescence level from untreated wells across the same assay plate. Cell  
proliferation was calculated for every dose combination, as described above.  
The growth effect of each combination was measured by the inhibition of the 
cellular response of the treatment relative to the untreated level (vehicle alone). 
For untreated vehicle and treated levels V and T, we calculated a fractional 
inhibition Z = 1 – T/V. The inhibition ranges from 0% at the untreated level to 
100% when T = 0. Using the Chalice software, provided by Horizon Discovery 
Inc52, the response of the combination was compared to its single agents, relative 
to the widely used Loewe model that utilizes drug with-itself dose-additivity as a 
reference. The strength of combination effects was calculated using the Synergy 
score S = k ln fX ln fY Σmax(0,Zdata) max(0,Zdata—ZLoewe), summed over all the 
measured doses in the matrix52. Here fX and fY are the threefold dilution factors 
between adjacent dosing points, and k is a scaling factor to account for untested 
matrix data points. Zdata is the measured response value at a dosing point, and 
ZLoewe is the expected Loewe dose-additive model response at any combined 
concentration (X,Y), calculated from sigmoidal fits to the single-agent response 
curves in the dose matrix52. In order to generate a measure for growth inhibi-
tion beyond stasis, day 0 measurements were taken and deducted from the end 
measurements. The following definitions were introduced to describe the extent 
of growth inhibition: no inhibition = 0, stasis = 1 and total cytotoxicity = 2.  
To arrive at these values for the fractional growth inhibition, Z (GI) = 1 – (Y/100) 
was used. Y was calculated using Y = (50 = (X1 – mean(X1,AC) mean(X2,NC_
T0) + mean(X2,AC))/(mean(X1,NC) – mean(X1,AC) mean(X2,NC_T0) + 
mean(X2,AC)) × (X1/X1 + sign(X1 – X1/X1 × (mean(X1,AC) + mean(X2,NC_T0)  
– mean(X2,AC))))) + (50 × (X1 – mean(X1,AC) – mean(X2,NC_T0) + 
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mean(X2,AC))/(mean(X2,NC_T0) – mean(X2,AC)) × (X1/X1 + sign(X1/X1 × 
(mean(X1,AC) + mean(X2,NC_T0) – mean(X2,AC)) – X1))) using the following 
definitions: X1 = individual data point (for example, treated well); mean(X1,AC) 
= AVG of media BG wells; mean(X1,NC) = AVG of wells with the vehicle-treated 
control; mean(X2,NC_T0) = AVG of wells with cells on day 0; mean(X2,AC) = 
AVG of media BG wells on day 0.

Pharmacokinetics analysis of encorafenib and LEE011 combination. Female 
nude mice, aged 7–8 weeks, were used for the PK study. LEE011 at 150 mg/kg, 
encorafenib at 20 mg/kg or the two in combination was given orally for one dose. 
After treatment, three mice from each treatment group were euthanized at 1, 4, 
8, 16 and 24 h. Blood was collected by cardiac puncture. Plasma samples were 
obtained by centrifugation, and analyzed by Exploratory Bioanalytical, inVentiv 
Health Clinical Lab, Princeton, NJ.
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