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The systematic translation of cancer genomic data into knowledge of
tumour biology and therapeutic possibilities remains challenging.
Such efforts should be greatly aided by robust preclinical model
systems that reflect the genomic diversity of human cancers and for
which detailed genetic and pharmacological annotation is available1.
Here we describe the Cancer Cell Line Encyclopedia (CCLE): a
compilation of gene expression, chromosomal copy number and
massively parallel sequencing data from 947 human cancer cell lines.
When coupled with pharmacological profiles for 24 anticancer
drugs across 479 of the cell lines, this collection allowed identification
of genetic, lineage, and gene-expression-based predictors of drug
sensitivity. In addition to known predictors, we found that plasma
cell lineage correlated with sensitivity to IGF1 receptor inhibitors;
AHR expression was associated with MEK inhibitor efficacy in
NRAS-mutant lines; and SLFN11 expression predicted sensitivity
to topoisomerase inhibitors. Together, our results indicate that large,
annotated cell-line collections may help to enable preclinical strati-
fication schemata for anticancer agents. The generation of genetic
predictions of drug response in the preclinical setting and their
incorporation into cancer clinical trial design could speed the emer-
gence of ‘personalized’ therapeutic regimens2.

Human cancer cell lines represent a mainstay of tumour biology and
drug discovery through facile experimental manipulation, global and
detailed mechanistic studies, and various high-throughput applica-
tions. Numerous studies have used cell-line panels annotated with both
genetic and pharmacological data, either within a tumour lineage3–5 or
across multiple cancer types6–12. Although affirming the promise of
systematic cell line studies, many previous efforts were limited in their
depth of genetic characterization and pharmacological interrogation.

To address these challenges, we generated a large-scale genomic data
set for 947 human cancer cell lines, together with pharmacological pro-
filing of 24 compounds across ,500 of these lines. The resulting collec-
tion, which we termed the Cancer Cell Line Encyclopedia (CCLE),
encompasses 36 tumour types (Fig. 1a and Supplementary Table 1; see
also http://www.broadinstitute.org/ccle). All cell lines were characterized
by several genomic technology platforms. The mutational status of
.1,600 genes was determined by targeted massively parallel sequencing,
followed by removal of variants likely to be germline events (Sup-
plementary Methods). Moreover, 392 recurrent mutations affecting 33

known cancer genes were assessed by mass spectrometric genotyping13

(Supplementary Table 2 and Supplementary Fig. 1). DNA copy number
was measured using high-density single nucleotide polymorphism arrays
(Affymetrix SNP 6.0; Supplementary Methods). Finally, messenger RNA
expression levels were obtained for each of the lines using Affymetrix
U133 plus 2.0 arrays. These data were also used to confirm cell line
identities (Supplementary Methods and Supplementary Figs 2–4).

We next measured the genomic similarities by lineage between CCLE
lines and primary tumours from Tumorscape14, expO, MILE and
COSMIC data sets (Fig. 1b–d and Supplementary Methods). For most
lineages, a strong positive correlation was observed in both chromo-
somal copy number and gene expression patterns (median correlation
coefficients of 0.77, range 5 0.52–0.94, P , 10215, for copy number, and
0.60, range 5 0.29–0.77, P , 10215, for expression, respectively; Fig. 1b,
c and Supplementary Tables 3 and 4), as has been described previ-
ously3–5,15. A positive correlation was also observed for point mutation
frequencies (median correlation coefficient 5 0.71, range 5 20.06–
0.97, P , 1022 for all but 3 lineages; Supplementary Fig. 5), even when
TP53 was removed from the data set (median correlation coefficient 5

0.64, range 5 20.31–0.97, P , 1022 for all but 3 lineages; Fig. 1d and
Supplementary Table 5). Thus, with relatively few exceptions (Sup-
plementary Information), the CCLE may provide representative genetic
proxies for primary tumours in many cancer types.

Given the pressing clinical need for robust molecular correlates of
anticancer drug response, we incorporated a systematic framework to
ascertain molecular correlates of pharmacological sensitivity in vitro.
First, 8-point dose–response curves for 24 compounds (targeted and
cytotoxic agents) across 479 cell lines were generated (Supplementary
Tables 1 and 6, and Supplementary Methods). These curves were
represented by a logistical sigmoidal function with a maximal effect
level (Amax), the concentration at half-maximal activity of the com-
pound (EC50), a Hill coefficient representing the sigmoidal transition,
and the concentration at which the drug response reached an absolute
inhibition of 50% (IC50).

Broadly active compounds, exemplified by the HDAC inhibitor
LBH589 (panobinostat), showed a roughly even distribution of Amax

and EC50 values across most cell lines (Fig. 2a). In contrast, the RAF
inhibitor PLX4720 had a more selective profile: Amax or EC50 values for
most cell lines could be categorized as ‘sensitive’ or ‘insensitive’ to
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PLX4720, with sensitive lines enriched for the BRAFV600E mutation
(Fig. 2a). To capture simultaneously the efficacy and potency of a drug,
we designated an ‘activity area’ (Fig. 2b and Supplementary Fig. 6). The
24 compounds profiled showed wide variations in activity area, and
those with similar mechanisms of action clustered together (Sup-
plementary Fig. 7).

Genomic correlates of drug sensitivity may be extracted by predictive
models using machine learning techniques6,10. We therefore assembled
all CCLE genomic data types into a matrix wherein each feature was
converted to a z-score across all lines (Supplementary Methods). Next,
we adapted a categorical modelling approach that used a naive Bayes
classification and discrete sensitivity calls, or an elastic net regression
analysis16 for continuous sensitivity measurements. Both approaches
were applied to all compounds and genomic data with or without gene
expression features (Supplementary Methods). Prediction perform-
ance was determined using tenfold cross-validation, and the elastic
net features were bootstrapped to retain only those that were consistent
across runs (Supplementary Methods).

Out of .50,000 input features, the regression-based analysis iden-
tified multiple known features as top predictors of sensitivity to several
agents (Supplementary Table 7 and Supplementary Figs 8 and 9), with
robust cross-validated performance (Supplementary Fig. 10 and 11).
For example, activating mutations in BRAF and NRAS were among the
top four predictors of sensitivity in models generated for the MEK
inhibitor PD-0325901 (ref. 10) (Fig. 2c). Additional predictive features
for MEK inhibition included expression of PTEN, PTPN5 and SPRY2
(which encodes a regulator of MAPK output). KRAS mutations were
also identified, albeit with a lower predictive value (Fig. 2c, Supplemen-
tary Tables 8 and 9 and Supplementary Fig. 8).

Other top predictors included EGFR mutations and ERBB2
amplification/overexpression for erlotinib8 and lapatinib17, respectively;

BRAFV600E for RAF inhibitors (PLX4720 (ref. 18) and RAF265); HGF
expression and MET amplification for the MET/ALK inhibitor PF-
2341066 (ref. 19); and MDM2 overexpression for Nutlin-3 (ref. 20)
sensitivity. Variants affecting the EXT2 gene, which encodes a glyco-
syltransferase involved in heparin sulphate biosynthesis, were signifi-
cantly correlated with erlotinib effects (Supplementary Fig. 12). This
observation is intriguing in light of a report linking heparin sulphate
with erlotinib sensitivity21. In addition, NQO1 expression was identified
as the top predictive feature for sensitivity to the Hsp90 inhibitor 17-
AAG, a quinone moiety metabolized by NAD(P)H:quinone oxido-
reductase (NQO1). NQO1 produces a high-potency intermediate
(17-AAGH2)22, and has previously been identified as a potential bio-
marker for Hsp90 inhibitors23.

Because some genetic/molecular alterations occur commonly in
specific tumour types, lineage may become a confounding factor in
predictive analyses. Indeed, a classifier built using the entire cell-line
data set performed suboptimally when applied exclusively to
melanoma-derived cell lines (Fig. 2d), whereas a model built with only
melanoma cell lines performed better (Fig. 2d). Predictive features in
the melanoma-only model showed a strong overexpression of genes
regulated by the transcription factors MITF and SOX10 (Supplemen-
tary Table 10), which may also help predict RAF inhibitor drug
sensitivity in melanoma cell lines.

Nonetheless, lineage emerged as the predominant predictive feature
for several compounds. For example, elastic net studies of the HDAC
inhibitor panobinostat identified haematological lineages as predictors
of sensitivity (Fig. 2e and Supplementary Fig. 9). Interestingly, most
clinical responses to panobinostat and related compounds (for example,
vorinostat and romidepsin) have been observed in haematological
cancers. Similarly, most multiple myeloma cell lines (12 of 14 lines
tested) exhibited enhanced sensitivity to the IGF1 receptor inhibitor
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Figure 1 | The Cancer Cell Line
Encyclopedia. a, Distribution of
cancer types in the CCLE by lineage.
b, Comparison of DNA copy-number
profiles (GISTIC G-scores) between
cell lines and primary tumours. The
diagonal of the heat map shows the
Pearson correlation between
corresponding tumour types. Because
cell lines and tumours are separate
data sets, the correlation matrix is
asymmetric: the top left showing how
well the tumour features correlate
with the average of the cell lines in a
lineage, and the bottom right showing
the converse. c, Comparison of
mRNA expression profiles between
cell lines and primary tumours. For
each tumour type, the log fold change
of the 5,000 most variable genes is
calculated between that tumour type
and all others. Pearson correlations
between tumour type fold changes
from primary tumours and cell lines
are shown as a heat map.
d, Comparison of point mutation
frequencies between cell lines and
primary tumours in COSMIC (v56),
restricted to genes that are well
represented in both sample sets but
excluding TP53, which is highly
prevalent in most tumour types.
Pairwise Pearson correlations are
shown as a heat map. Asterisk
indicates that the correlations of
oesophageal, liver, and head and neck
cancer mutation frequencies are
restored when including TP53.
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AEW541 (Fig. 2f and Supplementary Figs 8 and 9) and showed high
IGF1 expression (Fig. 2f). Interestingly, elevated IGF1R expression also
correlated with AEW541 sensitivity (Supplementary Fig. 9). The CCLE
results indicate that multiple myeloma may be a promising indication
for clinical trials of IGF1 receptor inhibitors24 and that these drugs may
have enhanced efficacy in cancers with high IGF1 or IGF1R expression.

Whereas BRAF and NRAS mutations are known single-gene pre-
dictors of sensitivity to MEK inhibitors, several ‘sensitive’ cell lines
lacked mutations in these genes, whereas other lines harbouring these
mutations were nonetheless ‘insensitive’ (Fig. 2c). The elastic net
regression model derived from the subset of cell lines with validated
NRAS mutations identified elevated expression of the AHR gene
(which encodes the aryl hydrocarbon receptor) as strongly correlated
with sensitivity to the MEK inhibitor PD-0325901 (Fig. 3a). This find-
ing was interesting in light of previous studies indicating that a related
MEK inhibitor (PD-98059) may also function as a direct AHR
antagonist25. We therefore hypothesized that the enhanced sensitivity
of some NRAS-mutant cell lines to MEK inhibitors might relate to a
coexistent dependence on AHR function.

To test this hypothesis, we first confirmed the correlation between
AHR expression and sensitivity to MEK inhibitors in a subset of
NRAS-mutant cell lines (Fig. 3b and Supplementary Fig. 13). Next,
we performed short hairpin RNA (shRNA) knockdown of AHR in cell
lines with high or low AHR expression (Fig. 3c). Silencing of AHR
suppressed the growth of three NRAS-mutant cell lines with elevated
AHR expression (Fig. 3d–f), but had no effect on the growth of two
lines with low AHR expression (Fig. 3g, h). The growth inhibitory
effect was confirmed with two additional shRNAs, where evidence
for dose dependence was also apparent (Fig. 3i, j). We also tested the
hypothesis that allosteric MEK inhibitors may suppress AHR function
by measuring the effect of PD-0325901 and PD-98059 on endogenous
CYP1A1 mRNA, a transcriptional target of AHR in some contexts.
Both compounds reduced CYP1A1 levels in NRAS-mutant melanoma
cells (IPC-298 and SK-MEL-2; Fig. 3k) but not in neuroblastoma cells
(CHP-212; Fig. 3k), indicating that other factors may govern CYP1A1
expression in the latter lineage. Together, these results suggest that
AHR dependency may co-occur with MAP kinase activation in some
NRAS-mutant cancer cells, and that elevated AHR may serve as a
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Figure 2 | Predictive modelling of pharmacological sensitivity using CCLE
genomic data. a, b, Drug responses for panobinostat (green) and PLX4720
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transitional concentration (EC50) for a sigmoidal fit to the response curve
(b). c, Elastic net regression modelling of genomic features that predict
sensitivity to PD-0325901. The bottom curve indicates drug response,
measured as the area over the dose–response curve (activity area), for each cell
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(n 5 434). Box-and-whisker plots show the activity area or mRNA expression
distributions relative to each cell line type (line, median; box, inter-quartile
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mechanistic biomarker for enhanced MEK inhibitor sensitivity in
this setting.

We also looked for markers predictive of response to several con-
ventional chemotherapeutic agents (Supplementary Fig. 7 and Sup-
plementary Table 6) and identified SLFN11 expression as the top
correlate of sensitivity to irinotecan (Fig. 4a), a camptothecin analogue
that inhibits the topoisomerase I (TOP1) enzyme. SLFN11 expression

also emerged as the top predictor of topotecan sensitivity (another
TOP1 inhibitor; Supplementary Figs 8 and 14). Overall, 12 of 16
lineages showed significant SLFN11 associations for topotecan or
irinotecan sensitivity (Pearson’s r $ 0.2, Supplementary Fig. 14b).
This finding was independently validated using data from the NCI-60
collection (Supplementary Fig. 15). SLFN11 knockdown did not affect
steady-state growth sensitivity profiles (Supplementary Fig. 14d–f).
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CYP1A1 mRNA expression in the neuroblastoma line CHP-212 or the
melanoma lines IPC-298 and SK-MEL-2 after exposure to vehicle (blue) or
MEK inhibitors (PD-0325901, green or PD-98059, purple). Error bars indicate
standard deviation between replicates, with n 5 12 (b), n 5 3 (c), n 5 6 (d–k).
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Figure 4 | Predicting sensitivity to topoisomerase I inhibitors. a, Elastic net
regression analysis of genomic correlates of irinotecan sensitivity is shown for
250 cell lines. b, Dose–response curves for three Ewing’s sarcoma cell lines
(MSS-ES-1, SK-ES-1 and TC-71) and two control cell lines with low SLFN11
expression (HCC-56 and SK-HEP-1). Grey vertical bars, standard deviation of

the mean growth inhibition (n 5 2). c, SLFN11 expression across 4,103 primary
tumours. Box-and-whisker plots show the distribution of mRNA expression for
each subtype, ordered by the median SLFN11 expression level (line), the inter-
quartile range (box) and up to 1.53 the inter-quartile range (bars). Sample
numbers (n) are indicated in parentheses.
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All three Ewing’s sarcoma cell lines screened showed both high
SLFN11 expression and sensitivity to irinotecan (Fig. 4b and Sup-
plementary Fig. 14). Ewing’s sarcomas also exhibited the highest
SLFN11 expression among 4,103 primary tumour samples spanning
39 lineages (Fig. 4c), suggesting that TOP1 inhibitors might offer an
effective treatment option for this cancer type. Towards this end,
several ongoing trials in Ewing’s sarcoma are examining irinotecan-
based combinations, or the addition of topotecan to standard regimens26.
For some lineages with high SLFN11 expression (for example, cervical
adenocarcinoma), topoisomerase inhibitors already comprise a standard
chemotherapy regimen. In other tumours where topoisomerase
inhibitors are commonly used (for example, colorectal and ovarian
cancers), a range of SLFN11 expression was observed, raising the
possibility that high SLFN11 expression might enrich for tumours more
likely to respond. If confirmed in correlative clinical studies, SLFN11
expression may offer a means to stratify patients for topoisomerase
inhibitor treatment.

By assembling the CCLE, we have expanded the process of detailed
annotationofpreclinicalhumancancermodels(http://www.broadinstitute.
org/ccle). Genomic predictors of drug sensitivity revealed both known
and novel candidate biomarkers of response. Even within genetically
defined sub-populations—or when agents were broadly active without
clear genetic targets—elastic net modelling studies identified key pre-
dictors or mechanistic effectors of drug response. Additional efforts that
increase the scale and provide complementary types of information (for
example, whole-genome/transcriptome sequencing, epigenetic studies,
metabolic profiling or proteomic/phosphoproteomic analysis) should
enable additional insights. In the future, comprehensive and tractable
cell-line systems provided through this and other efforts27 may facilitate
numerous advances in cancer biology and drug discovery.

METHODS SUMMARY
A total of 947 independent cancer cell lines were profiled at the genomic level (data
available at http://www.broadinstitute.org/ccle and Gene Expression Omnibus
(GEO) using accession number GSE36139) and compound sensitivity data were
obtained for 479 lines (Supplementary Table 11). Mutation information was obtained
both by using massively parallel sequencing of .1,600 genes (Supplementary
Table 12) and by mass spectrometric genotyping (OncoMap), which interrogated
492 mutations in 33 known oncogenes and tumour suppressors. Genotyping/copy
number analysis was performed using Affymetrix Genome-Wide Human SNP
Array 6.0 and expression analysis using the GeneChip Human Genome U133
Plus 2.0 Array. Eight-point dose–response curves were generated for 24 anticancer
drugs using an automated compound-screening platform. Compound sensitivity
data were used for two types of predictive models that used the naive Bayes
classifier or the elastic net regression algorithm. The effects of AHR expression
silencing on cell viability were assessed by stable expression of shRNA lentiviral
vectors targeting either this gene or luciferase as control. The effect of compound
treatment on AHR target gene expression was assessed by quantitative RT–PCR. A
full description of the Methods is included in Supplementary Information.
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In the Supplementary Information of this Letter, the use of distinct data
normalization and directionality methods for pharmacological response
calculations caused minor inconsistencies. We have therefore updated
Supplementary Table 11 and some of the Supplementary Figures to
resolve any confusion (see the Supplementary Information to this
Addendum). We also wish to describe the relevant drug sensitivity
normalization and response score calculations more completely.

Two versions of the drug response data were generated. First, raw
activity values were calculated at each dose as A 5 100(T/U 2 1), in

which T represents the Cell Titer Glo (CTG) level measured for the
compound-treated well, and U is the median level of the untreated
wells across the plate. This raw A is 0% with no drug and 100% for fully
active compounds, when no CTG is detected. Second, the data were
adjusted to a plate surface pattern and normalized to the MG132 posi-
tive control, as described in the Supplementary Methods. This norma-
lized A is also 0% with no drug, but 100% corresponds to the median
MG132 response on that plate. Although normalized drug responses
were used to determine EC50, IC50 and Amax values, we used the raw
drug responses for calculating the activity area (AA). This distinction is
now clear in the corrected Supplementary Table 11 (the two AA mea-
sures, derived from raw or normalized data, correlate closely: r 5 0.98).

The activity is the sum of differences between the measured Ai

at concentration i and A 5 0, excluding positive A values: AA~P
if0{ min (0,Ai=100)g. This AA has a value of 0 with no drug,

and 18 for a compound inhibiting at A 5 100% at all eight drug
concentrations, as illustrated in Fig. 2b of the original Letter. We hope
that this definition eliminates any confusion that may have existed in
the original Supplementary Methods (page 13) and enables others to
reproduce our AA results starting from the raw drug sensitivity data.
As a further means of clarification, we have added three columns to
Supplementary Table 11 showing the raw (non-normalized) response
data necessary to calculate AA, MG132 activity, and AA derived from
normalized response data.

In addition, although all computational analyses used the above AA
formula, a few Supplementary Figures (Supplementary Figs 6, 11, 9 and
14b) used a scale showing 8 2 AA. This value was used for display
purposes, so that low values corresponded to sensitive cell lines and the
visualization remained consistent with other sensitivity metrics (IC50,
Amax). This specification was noted in Supplementary Fig. 8 but had
been inadvertently cut off the Supplementary Fig. 9 legend. We have
therefore updated the Supplementary Fig. 9 legend to clarify where an
inverted scale was used, and updated the scale of Supplementary Figs 6,
11 and 14b to reflect our definition of AA (noted above).

These changes do not affect the analyses, results or scientific con-
clusions presented in the paper. The authors are indebted to B. Yadav,
who alerted them to these inconsistencies.

Supplementary Information is available in the online version of the
Addendum.
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Addendum to: Nature https://doi.org/10.1038/nature11003, 
published online 28 March 2012; addendum 28 November 2012.

The Supplementary Information of our original Letter (https://
doi.org/10.1038/nature11003) and the Addendum published on  
28 November 2012 (https://doi.org/10.1038/nature11735; hereafter 
referred to as ‘first Addendum’) contain all of the data used for our 
analyses. These data include normalized activity (growth inhibition) 
responses for every cell line at each dose for all 24 of the compounds 
and drugs tested. These activity values were calculated from replicated 
data points extracted from one or more experimental assay plates, 
and normalized using treated and untreated controls from the same 
plates; as detailed in the original Letter (see the original Supplementary 
Information 2, page 10), and in the first Addendum. In subsequent  
correspondence, readers expressed an interest in reproducing our 
experimental pre-processing, so we shared with them the raw Cell 
Titer Glo (CTG) data values from each experimental well. These data 
are now provided as a reference for future readers.

CORRECTIONS & AMENDMENTS

Table 1 | Descriptions for key columns in Supplementary Data 1
Header Description

CELL_LINE_NAME Cell line name

MASTER_PLATE_NAME Name of master plate for compound dispensing

PLATE_GROUP Experimental batch identifier

ASSAY_PLATE_NAME Barcode identifier for this experimental plate

DATE_CREATED Date and time of experimental plate readout

LAYER_TYPE CTG readout (RAW) or calculated activity (OUTPUT)

WELL_TYPE Untreated (NC), positive (AC), or drug treated (SA)

COLUMN_ID Column identifier for this experimental well

ROW_ID Row identifier for this experimental well

COMPOUND Sample-ID for the chemical used

CONCENTRATION Compound concentration in micromoles

VALUE Raw CTG readout value

Supplementary Data 1 to this Addendum contains raw values from 
wells with cell lines growing under control (AC, positive active; NC, 
untreated negative) or drug-treated (SA, single-agent) conditions. 
Supplementary Data 1 contains two row entries per well (one with raw 
CTG readouts, and the other with calculated activity values), and each 
column contains descriptions or response values, as detailed in Table 1  
of this Addendum. Only valid wells are included, so there may be miss-
ing concentrations from curves containing data that were flagged as 
‘invalid’. Compound and cell line names in Supplementary Data 1 are 
as they were originally captured, which in some cases may differ from 
names used in the Supplementary Tables of the original Letter and first 
Addendum. Calculated activity values may also differ in some cases 
from those in the original Letter, owing to subsequent quality-control 
call changes in our database since 2012. Chemical names can be recon-
ciled using Table 2 of this Addendum, noting that ‘sample-ID’ denotes 
the ‘ID-concept’ of Table 2 with salt form and batch suffixes appended. 
Discrepant cell line names may be understood with reference to col-
umns A, C and D of the ‘All_Drug_response_data’ sheet in supplemen-
tary data 1 from the 2015 CCLE and GDSC consortium paper1.

We thank Jessie Ambrose and Vladimir Baranov for extracting and 
quality-checking the raw chemical response data in this Addendum. 
We also thank the reader who requested the raw data and assisted in 
quality-checking these results. 

	1.	 The Cancer Cell Line Encyclopedia Consortium & The Genomics of Drug 
Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two 
cancer cell line data sets. Nature 528, 84–87 (2015).
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CORRECTIONS & AMENDMENTS

Table 2 | Chemical name mappings
Name ID-concept Name-probe Name-generic Name-brand

paclitaxel NVP-LEE850; NVP-BGT136; NVP-
LLP829; CHIR167540

TL-139; BMS-181339; LSM-1102; MGI-GP; SW198621 paclitaxel Taxol; Genexol;  
Abraxane

irinotecan NVP-LBN777; CHIR169217 CPT-11; U-101440E; CPT11; LSM-2167; DQ-2805; 
NSC-616348; SW197790; SW199156

irinotecan Camptosar; Campto; 
Topotecin

topotecan NVP-LBN564; NVP-LBN816; 
CHIR158120; SN-38

SKF-104864; INOC-010; INX-0076; BRD-A36630025; 
7-ethyl-10- hydroxycamptothecin; LSM-5662; 
E-89-001; NK-211; NSC-609699; SKF-S-104864-A; 
SW197557; SW199637

topotecan Hycamtin; Evotropin; 
Topotecan; Hycamptin

panobinostat NVP-LBH589 NVP-LBH589; LSM-4284; LBH-589 panobinostat Faridak

L-685458 NVP-LLP590; NVP-AHK537; 
CGP055750

L-685458; L-682679; BRD-K87317732

tanespimycin NVP-LJM835; NVP-BAG500; NVP-
LLP773; CHIR371658

17-AAG; CNF-1010; IPI-493; IPI-504; KOS-953; LSM-
5870; BRD-K81473043; CP-127374; NSC-330507; 
NSC-704057

tanespimycin; 
retaspimycin; 
17-allylaminogel-
danamycin

NVP-LBW242 NVP-LBW242; NVP-LDK934 CHEMBL1950720; SureCN2731929;NVP-LBW242; 
LBW242

nutlin-3A NVP-BEP453; LSM-6351 nutlin-3A

palbociclib NVP-LCY393 PD-0332991; LSM-1071 palbociclib

saracatinib NVP-BHT496 AZD-0530; NSC-735464; KIN001-045; LSM-1032 saracatinib

PLX-4720 NVP-LFL230; CHIR779209 PLX-4720; LSM-1049

PD-0325901 NVP-LBW624; CHIR371086 PD-0325901; DB07046; CHEMBL447345; CHEM-
BL573579; CHEMBL573819; LSM-1101

selumetinib NVP-LFE158 AZD-6244; Arry-142886; LSM-1056; BRD-K57080016; 
ARRY-886

selumetinib

NVP-RAF265 NVP-RAF265; HIR371265; 
HIR565852

CHIR-265; NVP-RAF265; LSM-1207

nilotinib NVP-AMN107; NVP-LOY196 NVP-AMN107; LSM-1099;AMN-107 nilotinib Tasigna

NVP-TAE684 NVP-TAE684 NVP-TAE684; TAE-684; KIN001-017; LSM-1024

crizotinib NVP-LDQ718; NVP-BQK827 PF-2341066; KIN001-023; LSM-1027 crizotinib Xalkori

erlotinib NVP-XBX005; CHIR381147; 
CGP084057; CGP084057A

CP-258; OSI-774; RG-1415; Ro-50-8231; LSM-1097; 
CP-358774; NSC-718781; R-1415; SW198886

erlotinib Tarceva

lapatinib NVP-BCZ548 GW-2016; GW-572016F; GSK-572016; LSM-1051; 
W-572016; SW199101

lapatinib Tykerb; Tyverb

dovitinib NVP-TKI258; NVP-BAV666; 
CHIR154258

CHIR-258; TKI-258; NVP-TKI258; LSM-1127 dovitinib

sandostatin NVP-AES222; NVP-AEW541 NVP-AEW541; CC-535; LSM-1122; AEW541 sandostatin

PHA-665752 NVP-BBD023 PHA-665752; SureCN140412; TCMDC-125885; LSM-
1125

vandetanib NVP-AFD094; CHIR160840 ZD-6474; AZD-6474; LSM-1199 vandetanib Caprelsa; Zactima

sorafenib NVP-LBK294; CHIR156503 Bay-43-9006; NSC-724772; LSM-1008 sorafenib Nexavar
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